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Outline

 Neighborhood-scale air quality modeling

* Introduction to multi-scale modeling

 \Weather Research and Forecasting (WRF) model
e The immersed boundary method and WRF

e Vertical grid nesting in WRF

* WRF to WRF-IBM grid nesting (in development)



San Francisco Air Quality Modeling
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San Francisco Air Quality Modeling
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Urban Topography

e LiDAR dataset of building
heights above ground level

— Provided by the San
Francisco Department of
Public Health

e Combined with National

Elevation Dataset 1/3" arc-

second ground topography




PM2.5 Emissions

* Provided by the Bay
Area Air Quality
Management District. _

e ~2m resolution.

e Weighted depending
on the time of day and
weekday.




Options For Modeling of Urban Dispersion

1) Add atmospheric physics to a computational
fluid dynamics (CFD) model.

2) Couple a CFD model to a numerical weather
prediction (NWP) model.

3) Downscale to CFD-scales within a NWP
model.



Multi-Scale Atmospheric Modeling

e Resolves features between synoptic-scale and

turbulent-scale.
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Meso-Scale to Micro-Scale

Scale | FeatureSize | Features Resolved

Meso-alpha 2000km — 200km tropical cyclones, weather

fronts
Meso-beta 200km — 20km land-sea breeze, lake

effect snow storms ﬁ
Meso-gamma 20km — 2km thunderstorm convection,

large-scale terrain effects 1980-1990
Micro 1km —1m turbulent mixing,

convection

1950-1980

Current Generation Models
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Wyngaard’s “Terra-Incognita”
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Potential Applications for
Multi-Scale Modeling

 Wind energy forecasting and turbine siting

* Mountain meteorology e
e Urban meteorology
* Dispersion modeling

Aitken ML, Kosovic B, Mirocha JD, Lundquist JK, 2014: Large-eddy simulation of
wind turbine wake dynamics in the stable boundary layer using the Weather Research
and Forecasting model, J. Renewable and Sustainable Energy, 6

Photo credit: Ralph Turncotte. From Sea Breeze and 13
Local Winds by John E. Simpson.



What’s Needed for Multi-Scale Modeling?

e Meso-scale model
— Weather Research and Forecasting (WRF) model
e Turbulence modeling at high resolutions

— Large Eddy Simulation (LES)
e Ability to handle complex terrain

— Immersed boundary method (WRF-IBM) f& "
N &
e Ability to downscale information b
— Vertical grid nesting in WRF M1 TR T s o

4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34

e Adaptive or scale-dependent parameterizations
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Horizontal Resolution
Numerical Weather Prediction Model Operational
At Launch Currently

NGM Nested Grid Model 90km 1987-2000

European Center
for Medium-Range

ECMWEF Weather 125km 16km 1987+
Forecasting

RUC it Lpeits 60km 13km 1994-2012
Cycle
Eta 29km 1995-2006

NAM North American 19km 2006+
Meso-scale

GFS Ellogl [ForteEest 28km 13km 2002+
System

RAP i) Ufpekite 13km 2012+
Cycle

HRRR High-Resolution 3km 2013+

Rapid Refresh

Flow-Following
FIM9.5 Finite-Volume 15km 2014+



The Weather Research and Forecasting
Model

e Meso-scale, regional, numerical
weather prediction (NWP) model

e Open-source, community developed

e Maintained by the National Center for
Atmospheric Research

e Fully compressible and nonhydrostatic
e Large eddy simulation capable

e Parameterizations for land surface
model physics, long and shortwave
radiation, subgridscale cumulus
development, microphysics, etc...

e Downscaling using grid-nesting

Images from http://www.mmm.ucar.edu/wrf/OnLineTutorial/CASES/SingleDomain



Downscaling With Grid Nesting

e Coarse-resolution
“parent” grid provides «
data for initialization
and boundary -
conditions of fine- o
resolution “child” grid.

 Enables large-scale o
features to influence
the child domain.
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Resolved Slope & Grid Resolution



Resolved Slope & Grid Resolution




Resolved Slope & Grid Resolution
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Resolved Slope & Grid Resolution
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The Immersed Boundary Method
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The Immersed Boundary Method

e To set the value of a ghost
point,

///

" ey
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The Immersed Boundary Method
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point,

e Locate the image point by
reflecting the ghost point
across the interface
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The Immersed Boundary Method
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The Immersed Boundary Method

e To set the value of a ghost
point,

e Locate the image point by
reflecting the ghost point
across the interface

e Determine the nearest
computational nodes to
the image point

e Set the image point’s value
by interpolation

e Using image point’s value,
determine forcing at ghost
point to maintain the
desired boundary
condition 29




The Immersed Boundary Method

To set the value of a ghost
point,

Locate the image point by
reflecting the ghost point
across the interface

Determine the nearest
computational nodes to
the image point

Set the image point’s value
by interpolation

Using image point’s value,
determine forcing at ghost
point to maintain the

desired boundary
condition
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The Immersed Boundary Method

e To set the value of a ghost
point,
e Locate the image point by

reflecting the ghost point
across the interface

e Determine the nearest
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by interpolation
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desired boundary
condition
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The Immersed Boundary Method

To set the value of a ghost
point,

Locate the image point by
reflecting the ghost point
across the interface

Determine the nearest
computational nodes to
the image point

Set the image point’s value
by interpolation

Using image point’s value,
determine forcing at ghost
point to maintain the

desired boundary
condition

32




The Immersed Boundary Method

e To set the value of a ghost
point,

e Locate the image point by
reflecting the ghost point
across the interface

e Determine the nearest
computational nodes to
the image point

e Set the image point’s value
by interpolation

e Using image point’s value,
determine forcing at ghost
point to maintain the

desired boundary
condition

33



The Immersed Boundary Method

e To set the value of a ghost
point,
e Locate the image point by

reflecting the ghost point
across the interface

e Determine the nearest
computational nodes to
the image point

e Set the image point’s value
by interpolation

e Using image point’s value,
determine forcing at ghost
point to maintain the
desired boundary
condition

34



The Immersed Boundary Method
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The Immersed Boundary Method

e To set the value of a ghost
point,
e Locate the image point by

reflecting the ghost point
across the interface

e Determine the nearest
computational nodes to
the image point

e Set the image point’s value
by interpolation

e Using image point’s value,
determine forcing at ghost
point to maintain the

desired boundary
condition
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WRF-IBM'’s Vertical Coordinate

 Pressure-based but not terrain-following.

* No grid skewness due to terrain slopes.
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WRF-IBM Setup

Inverse Distance Weighting interpolation scheme
Smagorinsky turbulence closure
No-slip bottom boundary

Two nested domains with the parent being flat
and the nested domain containing buildings

Periodic lateral boundary conditions on the
parent domain

Rigid, no-flux, top boundary
nitialized with an idealized sounding

ine source of emissions with zero initial
concentration everywhere
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Picking the Grid Resolution




Wind Speed at 2m AGL
0001-01-01_02:00:30

wind speed [m/s]
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Vertical Velocity at 2m AGL
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Passive Tracer at 2m AGL
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East-West Slice of Passive Tracer
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Vertical Grid Nesting in WRF

 WRF requires all concurrently nested domains to
use the same number and placement of vertical
grid levels.

e Vertical grid nesting...

— allows for additional vertical levels in a nested
domain.

— prevents an excessive number of vertical levels on the
parent domain.

— provides control over the grid aspect ratio of each
domain
 Vital if nesting in a LES model.
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Existing Vertical Grid Nesting in WRF

e Concurrent simulation e Sequentially run simulations with
— All domains must have “ndown”
identical vertical levels — Nest boundary conditions

update at the frequency of
parent grid history

e Uses integer refinement of parent
vertical levels

(1) Moustaoui, M., A. Mahalov, J. Dudhia, and D. Gill, 2009: Nesting in wrf with vertical grid refinement and implicit relaxation.
WRF Users” Workshop 2009, Boulder, CO, National Center for Atmospheric Research.
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Concurrent Vertical Grid Nesting

e Utilizes the interpolation scheme from ndown

— Cubic Hermite interpolation

e Matches value at known points and first derivative

— Can use an arbitrary number of vertical levels for
nested domain compared to parent domain

* Included in the public release of WRFv3.6.1

— Still in development and currently undocumented

 Enabled by one new variable in namelist.input
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Validation of Vertical Grid Nesting

e Flat plate
e Periodic lateral boundary conditions
* No atmospheric physics

* |nitialized with idealized sounding
— 10 m st wind speed at all heights
— Dry and neutral temperature profile

e Forced by maintaining initial conditions in top
3000 meters of domain
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With & Without Vertical Grid Nesting
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Vertical Nesting with Atmospheric Physics

e Flat plate with uniform land surface and soil properties
e |nitialized with a stable, dry, quiescent idealized sounding
e Periodic lateral boundary conditions

e Parameterizations and sub-models:
— Longwave radiation (RRTM)
— Shortwave radiation (Dudhia)
— Land surface model (Noah)
— Surface layer (Monin-Obukhov)

e Difficulties with radiation schemes

— We are currently evaluating which schemes are working
properly with our modifications and enabling the use of several
popular schemes with vertical nesting
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Heating of a Flat Plate
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WRF Meso-Scale Test Case

Parameterizations and sub-models:
— Microphysics (WSM 3-class)

— Longwave radiation (RRTM)

— Shortwave radiation (Dudhia)

— Land surface model (Thermal diffusion)
— Surface layer (Monin-Obukhov)

— Planetary Boundary Layer (YSU)

— Cumulus Parameterization (Kain-Fritsch)

BFC WS ot 11 UTC on 25 Jan 2000

34°N

32°N

30°N

85°W

%W
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Without Vertical Grid Nesting

Vertical Levels
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With Vertical Grid Nesting
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With and Without Vertical Grid Nesting

Vertical Levels Vertical Levels
Parent: 60 Parent: 30
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East-West Slice of Potential Temperature
(from the nested domain)

Vertical Levels Vertical Levels
Parent: 60 Parent: 30
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East-West Slice of Wind Speed [m s-1]
(from the nested domain)
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East-West Slice of Vertical Velocity [m s-1]
(from the nested domain)
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Modeling the Bay Area With
Vertical Grid Nesting
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Western US, June 18th 2012
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Oakland Radiosonde
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Terrain Height & Wind Vectors from
Lowest Model Level

||
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Wind Speed at Lowest Model Level
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East-West Slice of Wind Speed
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Current Work: WRF to WRF-IBM Nesting
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Current Work: WRF to WRF-IBM Nesting

e Vertical grid nesting is necessary to force a WREF-
IBM child domain that is nested within a WRF
parent domain.

e WRF’s solver is passed variables that are
“coupled” with the dry air mass in the column.

 The parent and nest have different values for the
dry air mass in the column because the domains
have different bottomes.
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Current Work: WRF to WRF-IBM Nesting

WRF to WRF nesting

e Couple parent domain with Hoarent
* Couple nested domain with .

e \Vertically interpolate coupled
parent on to the nest

e Horizontally interpolate results
on to the nest

* Save results to nested domain
* Uncouple parent domain with p, ..
* Uncouple nested domain with p

WRF to WRF-IBM nesting

Vertically interpolate parent on
to the nest

Horizontally interpolate results
on to the nest

Couple results with p, .
Save results to nested domain
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Current Work: WRF to WRF-IBM Nesting
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Current Work: WRF to WRF-IBM Nesting
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Thank you for your attention

 Neighborhood-scale air quality modeling

e Introduction to multi-scale modeling

 Weather Research and Forecasting (WRF) model
e The immersed boundary method and WRF

e Vertical grid nesting in WRF

* WRF to WRF-IBM grid nesting (in development)

 Thank you to Lawrence Livermore National
Laboratory, Jeff Mirocha, Megan Daniels, and
EFMH at UC Berkeley

Dave Wiersema, wiersema@berkeley.edu



Johnny von Neumann’s Simulations

* J. G. Charney, R. Fjortoft, J. von Neumann, 1950: Numerical Integration of
the Barotropic Vorticity Equation. Tellus, Volume-2 Issue-4, 237-254, doi:
10.1111/j.2153-3490.1950.tb00336.x
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Approaches to Downscaling

in the

used

e Adaptive Mesh Refinement (AMR),

Model for Prediction Across Scales (MPAS)
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